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The Standard Model explains only about 5% of our Universe

What is the remaining 95% made of?

How does gravity really works?

Why there is no antimatter in nature? 2
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CERN
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Engineering and technological 
challenges

… in a nutshell Accelerators infrastructure

~10000 magnets for beam control

>1000 superconducting dipoles for 
bending
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The Worldwide LHC 
Computing Grid (WLCG)

170 data centres in 42 countries

About 1 million processing cores 

>1000 Petabytes of CERN data stored worldwide

11/05/2022 QTI & CERN-IBM Hub



New Physics search as a Big Data problem
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New physics is down here !

> 400 PB of collisions data

cms.cern



Physics object
reconstruction
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CMS public
2020 estimates

HL-LHC Total CPU

Reconstruction Reco Sim Other Gen Sim Digitization Analysis ReMiniAOD



Why do we want to do it with QC?

Data Analysis

Khachatryan, Vardan, et al. Physical review letters 116.17 (2016): 172302.



Quantum Machine 
Learning :

Some basic concepts



Quantum Machine Learning

Data 
Preparation

Model 
Definition

Model TrainingModel Testing

Model 
Interpretation
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Quantum Machine Learning models
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… in a nutshell

Variational algorithms Kernel methods

General algorithms applicable to different problems, implemented as quantum-classical hybrids, noise robust

kernels defined by a quantum  feature map:”equivalent” of a neural network
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Learning in the quantum space
… in a nutshellVanishing gradients, kernels concentration, lack of generalization, trainability barriers….

Ideally we are looking for classically intractable models
In reality we compromise between “power” and convergence

J. McClean et al., arXiv:1803.11173

Rudolph, M. S., et al., arXiv:2305.02881.



Quantum Machine 
Learning examples:

Anomaly Detection

Quantum anomaly detection in the latent space 

of proton collision events at the LHC
arXiv:2301.10780.



The curse of  dimensionality

200 simultaneous

collisions!
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Quantum Machine Learning for Anomaly 
Detection

Anomaly detection can point to new physics at the LHC



Quantum anomaly detection in the latent space 

of proton collision events at the LHC

Vasileios Belis et al., arxiv:
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Anomaly Detection

Higher
is better

Increasing entanglement & expressivity

Classical is

better



Quantum Machine 
Learning examples:

Reinforcement Learning
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Reinforcement learning
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… in a nutshell

Trial-and-error learning

• Agent takes actions in environment and collects rewards

Q-learning
• Estimate return using Q-function Q(𝐬, 𝐚)

• Learn iteratively using collected interactions

• Once trained, select action greedily

𝑎 = arg maxa 𝑄(𝒔, 𝒂)

RL book: Sutton & Barto

State
where am I? Where are 
ghosts, snacks, cookies?

Actions
up, down, left, right

Reward
food (+), ghosts (-)

Return
how much food am I 
going to eat over time

Example: Pacman

Schenk, M et al. Hybrid actor-critic algorithm for quantum reinforcement learning at 
CERN beam lines. arXiv preprint arXiv:2209.11044.,  CHEP2023

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
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1st study: 1D beam steering
CERN North Area transfer line (discrete action space)

50x fewer 
training steps

DQN

FERL

300x fewer network 
parameters

Free-energy based RL (FERL)
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RL performance depends on type of Q-
function approximator 

➢ Classical Deep Q-learning (DQN)
Feed-forward neural net

➢ Free-energy based RL (FERL)
Quantum Boltzmann machine (QBM)

Key concept: sample-efficiency

➢ Relevant for particle accelerator control 
given cost of beam time (online training)

Schenk, M et al. Hybrid actor-critic algorithm for quantum reinforcement learning at 
CERN beam lines. arXiv preprint arXiv:2209.11044.,  CHEP2023
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2nd study: 10D continuous beam steering
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Environment: e- beam line of AWAKE

➢ Action: deflection angles at 10 correctors

➢ State: beam positions at 10 BPMs

➢ Objective: minimize beam trajectory rms

reward: negative rms from 10 BPMs
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Training: on D-Wave Advantage quantum annealer (QA)

Exploring & learning Success

Objective

Evaluation: on actual beam line
Real vs. simulated QA

➢ Agent minimizes rms in 1 step in 60 % cases

➢ Hyperparameter tuning with simulated QA



Quantum Machine 
Learning examples:

Phase Transitions identification



Classifying quantum data

Generate quantum states directly on the device

Train QCNN to classify quantum states

Use marginal datasets→ OOD generalization !

Saverio Monaco et al., Quantum phase detection generalisation
from marginal quantum neural network models, 
arXiv:2208.08748v1.

Out of Distribution Generalization 
M..Caro et al., Out-of-distribution generalization for learning quantum 

dynamics, arxiv:2204.10268

https://arxiv.org/abs/2204.10268


The CERN Quantum Technology Initiative

HYBRID QUANTUM 
COMPUTING AND 
ALGORITHMS

QUANTUM 
NETWORKS AND 
COMMUNICATIONS

COLLABORATION 
FOR IMPACT

CERN QUANTUM 
TECHNOLOGY 
PLATFORMS

Phase 2 :2024-2028



Outlook and open questions

• Quantum computing offers great opportunties while HEP provides challenging

problems

• What are the most promising applications?

• How do we define performance and validate results on realistic use cases?

• Experimental data has high dimensionality

• Can we train Quantum Machine Learning algorithms effectively?

• Can we reduce the impact of data reduction techniques?

• Experimental data is shaped by physics laws

• Can we leverage them to build better algorithms? 

• CERN is committed to creating impact on QT research in the coming years
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