Quantum Machine Learning at CERN

Sofia Vallecorsa

AI and Quantum Research Lead

Neptune Wide Field (Webb's NIRCam) Sept 2022 Credits: IMAGE: NASA, ESA, CSA, STS IMAGE PROCESSING: J. DePasquale (STScl)

The Standard Model explains only about 5% of our Universe What is the remaining 95% made of? How does gravity really works? Why there is no antimatter in nature? 2

Engineering and technological challenges

Accelerators infrastructure

- ${\sim}10000$ magnets for beam control
- >1000 superconducting dipoles for bending

COMMANDS

PERIM

COUNT

NO CO

No C

New Physics search as a Big Data problem

> 400 PB of collisions data

Physics object reconstruction

Here be dragons... and muons

Data Analysis

Khachatryan, Vardan, et al. Physical review letters 116.17 (2016): 172302.

Quantum Machine Learning :

Some basic concepts

Quantum Machine Learning

Quantum Machine Learning models

General algorithms applicable to different problems, implemented as quantum-classical hybrids, noise robust

Variational algorithms

"equivalent" of a neural network

Kernel methods

kernels defined by a quantum feature map:

$$k(x_i, x) \coloneqq \phi(x_i)^\dagger \cdot \phi(x)$$

Learning in the quantum space

Vanishing gradients, kernels concentration, lack of generalization, trainability barriers....

Ideally we are looking for classically intractable models In reality we compromise between "power" and convergence

Quantum Machine Learning examples:

Anomaly Detection

Quantum anomaly detection in the latent space of proton collision events at the LHC *arXiv:2301.10780*.

The curse of dimensionality

HL-LHC tī event in ATLAS ITK at <µ>=200

200 simultaneous collisions!

Quantum Machine Learning for Anomaly Detection

Anomaly detection can point to new physics at the LHC

Anomaly Detection

Increasing entanglement & expressivity

Quantum anomaly detection in the latent space of proton collision events at the LHC Vasileios Belis *et al.*, arxiv:

Quantum Machine Learning examples:

Reinforcement Learning

Schenk, M *et al.* Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines. *arXiv preprint arXiv:2209.11044.*, CHEP2023

Reinforcement learning

Trial-and-error learning

Agent takes actions in environment and collects rewards

Q-learning

- Estimate return using Q-function Q(s, a)
- Learn iteratively using collected interactions
- Once trained, select action greedily

 $a = \arg \max_{a} Q(s, a)$

State

where am I? Where are ghosts, snacks, cookies?

Actions

up, down, left, right

Reward

food (+), ghosts (-)

Return

how much food am I going to eat over time

Free-energy based RL (FERL)

RL performance depends on type of Qfunction approximator

- Classical Deep Q-learning (DQN) Feed-forward neural net
- Free-energy based RL (FERL)
 Quantum Boltzmann machine (QBM)

Key concept: sample-efficiency

Relevant for particle accelerator control given cost of beam time (online training)

1st study: 1D beam steering
CERN North Area transfer line (discrete action space)

Schenk, M *et al.* Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines. *arXiv preprint arXiv:2209.11044.*, CHEP2023

2nd study: 10D continuous beam steering

Environment: e⁻ beam line of AWAKE

- Action: deflection angles at 10 correctors
- State: beam positions at 10 BPMs
- Objective: minimize beam trajectory rms
 - reward: negative rms from 10 BPMs

Training: on D-Wave Advantage quantum annealer (QA)

Evaluation: on actual beam line *Real vs. simulated QA*

- Agent minimizes rms in 1 step in 60 % cases
- Hyperparameter tuning with simulated QA 20

Quantum Machine Learning examples:

Phase Transitions identification

Saverio Monaco et al., Quantum phase detection generalisation from marginal quantum neural network models, arXiv:2208.08748v1.

Classifying quantum data

Generate quantum states directly on the device Train QCNN to classify quantum states Use marginal datasets \rightarrow OOD generalization !

Out of Distribution Generalization

M..Caro et al., Out-of-distribution generalization for learning quantum dynamics, <u>arxiv:2204.10268</u>

The CERN Quantum Technology Initiative

Phase 2 :2024-2028

HYBRID QUANTUM COMPUTING AND ALGORITHMS **CERN QUANTUM TECHNOLOGY PLATFORMS COLLABORATION FOR IMPACT**

QUANTUM NETWORKS AND COMMUNICATIONS

Outlook and open questions

- Quantum computing offers great opportunties while HEP provides challenging problems
 - What are the most promising applications?
 - How do we define performance and validate results on realistic use cases?
- Experimental data has high dimensionality
 - Can we train Quantum Machine Learning algorithms effectively?
 - Can we reduce the impact of **data reduction** techniques?
- Experimental data is shaped by physics laws
 - Can we leverage them to build better algorithms?
- CERN is committed to creating impact on QT research in the coming years

